Category Archives: Uncategorized

Farnam disk usage

gerstein 5.59995E+11 of 600TB
gg487 72097902080
sl857 46536808960
jx98 42157560192
fn64 37383062784
tg397 36354959232
cy288 35153367680
mg888 32460140160
jz435 28900470144
sk972 21964532864
pse5 20415937280
dl598 19097782272
sl2373 15545731968
cs784 14082331264
mr724 11791422592
sl847 9972764800
wum2 9457952128
ll426 8905029760
pmm49 8371290624
jad248 7989755008
yy532 7351755648
yy222 6347266176
rrk24 6182451584
yf9 5816445952
hm444 5719887232
mihali 5459016704
meg98 4235523456
lc848 4090249984
ah633 3367398912
bp272 2906803456
xk4 2467884544
jjl86 2087435904
rdb9 1763952640
msp48 1748680320
as2665 1596345472
ky26 1583088768
jw2394 1562731648
ml724 1557992448
jl56 1480538368
ha275 1467031936
sb238 1275168128
gf3 1189340928
jrb97 1012897664
slw67 826952192
zc264 802075392
pdm32 789250432
lh372 671649152
dc547 648720384
mx55 635310720
jsr59 592016256
xc279 554618880
as898 506352512
xs252 499962624
gunel 499962624
mpw6 385383040
hz244 374372096
km735 337744640
nb23 324053504
ls926 314810880
keckadmins 265108480
aa544 249558400
xl348 237337088
yf95 197553536
simen 163574272
xz374 162198144
lr579 159751424
nmb38 115795456
jjl83 109213440
mas343 96425216
yk336 95688832
williams 95688832
zl222 68034176
wb244 63682432
rka24 59127808
yy448 46536704
aa65 44632832
law72 43699072
shuch 39508992
gene760 33406080
zhao 25241600
ajf73 22082688
amg89 21919360
co254 21889920
an377 19965312
xm24 19335680
jc2296 17970560
jw72 17455616
jhq4 17082240
njc2 16694016
root 9156608
jk935 6167936
cc59 4636672
yz464 1122176
gene760_2016 475520
bab99 387584
dw396 383872
tl444 326144
dr395 185472
mj332 60160
rm658 4096
jjp76 3968

Math-applied APPLIED MATH PROGRAM: Seminar & Refreshments Thursday, April 10, 2018

APPLIED MATH/ANALYSIS SEMINAR

Speaker Mauro Maggioni, John Hopkins University

Date: Tuesday, April 10, 2018

Time: 3:45p.m. Refreshments (AKW, 1st Floor Break Area)

4:00p.m. Seminar (LOM 206)

Title: “Learning and Geometry for Stochastic Dynamical Systems in high dimensions”

Abstract:

We discuss geometry-based statistical learning techniques for performing model reduction and modeling of certain classes of stochastic high-dimensional dynamical systems. We consider two complementary settings. In the first one, we are given long
trajectories of a system, e.g. from molecular dynamics, and we estimate, in a robust fashion, an effective number of degrees of freedom of the system, which may vary in the state space of then system, and a local scale where the dynamics is well-approximated by a reduced dynamics with a small number of degrees of freedom. We then use these ideas to produce an approximation to the generator of the system and obtain, via eigenfunctions of an empirical Fokker-Planck equation (constructed from data), reaction coordinates for the system that capture the large time behavior of the dynamics. We present various examples from molecular dynamics illustrating these ideas.

In the second setting we only have access to a (large number of expensive) simulators that can return short paths of the stochastic system, and introduce a statistical learning framework for estimating local approximations to the system, that can be (automatically) pieced together to form a fast global reduced model for the system, called ATLAS. ATLAS is guaranteed to be accurate (in the sense of producing stochastic paths whose distribution is close to that of paths generated by the original system) not only at small time scales, but also at large time scales, under suitable assumptions on the dynamics. We discuss applications to homogenization of rough diffusions in low and high dimensions, as well as relatively simple systems with separations of time scales, and deterministic chaotic systems in high-dimensions, that are well-approximated by stochastic
diffusion-like equations.
Mauro Maggioni 4-10 flyer.pdf

Seminar by Nobel Laureate W.E. Moerner, April 11th

Attached please find a seminar announcement for Nobel Laureate, W.E. Moerner on Wednesday, April 11, 2018.

Speaker: W.E. Moerner, Nobel Laureate

Title: “Single Molecules for 3D Super-Resolution Imaging and Single Particle Tracking in Cells: Methods and Applications:

Date: Wednesday, April 11, 2018

Time & Place: 3:30 PM, SCL 110

Host: Biophysics Training Grant Students

Admins Please Post

Statseminars Joint Biostatistics / Stat & Data Science Seminar , Speaker Carey E. Priebe, 4/9 @4:15pm-5:30pm

biostatistics / STATISTICS & DATA SCIENCE Joint SEMINAR

Date: Monday, April 9, 2018

Time: 4:15pm – 5:30pm

Place: Yale Institute for Network Science, 17 Hillhouse Avenue, 3rd Floor, Rm 328

Seminar Speaker: Carey E. Priebe

Department of Applied Mathematics & Statistics, Johns Hopkins University

Personal Website: https://www.ams.jhu.edu/~priebe/

Title: On Spectral Graph Clustering

Abstract: Clustering is a many-splendored thing. As the ill-defined cousin of classification, in which the observation to be classified X comes with a true but unobserved class label Y, clustering is concerned with coherently grouping observations without any explicit concept of true groupings. Spectral graph clustering — clustering the vertices of a graph based on their spectral embedding — is all the rage, and recent theoretical results provide new understanding of the problem and solutions. In particular, we reset the field of spectral graph clustering, demonstrating that spectral graph clustering should not be thought of as kmeans clustering composed with Laplacian spectral embedding, but rather Gaussian mixture model (GMM) clustering composed with either Laplacian or Adjacency spectral embedding (LSE or ASE); in the context of the stochastic blockmodel (SBM), we use eigenvector CLTs & Chernoff analysis to show that (1) GMM dominates kmeans and (2) neither LSE nor ASE dominates, and we present an LSE vs ASE characterization in terms of affinity vs core-periphery SBMs. Along the way, we describe our recent asymptotic efficiency results, as well as an interesting twist on the eigenvector CLT when the block connectivity probability matrix is not positive semidefinite. (And, time permitting, we will touch on essential results using the matrix two-to-infinity norm.) We conclude with a ‘Two Truths’ LSE vs ASE spectral graph clustering result — necessarily including model selection for both embedding dimension & number of clusters — convincingly illustrated via an exciting new diffusion MRI connectome data set: different embedding methods yield different clustering results, with one (ASE) capturing gray matter/white matter separation and the other (LSE) capturing left hemisphere/right hemisphere characterization.

4:00 p.m. Pre-talk Refreshments

4:15 p.m. – 5:30 Seminar, Room 328, 17 Hillhouse Avenue

For more details and upcoming events visit our website at
http://statistics.yale.edu/ .

farnam disk usage

gerstein 5.53462E+11 of 600TB
gg487 72097810816
sl857 46530224384
jx98 40508795904
fn64 37347512960
tg397 36353401600
cy288 34565348480
mg888 32044198656
jz435 28591629952
sk972 21960756992
pse5 20384692992
dl598 18734209536
sl2373 15545554944
cs784 14082331264
mr724 11768326784
sl847 9961054592
wum2 9451566208
ll426 8905029760
pmm49 8177639424
jad248 7989755008
yy222 6347266176
rrk24 6182451584
yf9 5816445952
hm444 5719886976
mihali 5459016704
yy532 5329017728
meg98 4110285952
lc848 4090249984
ah633 3367398912
bp272 2906803456
xk4 2432351744
jjl86 2078022016
rdb9 1763952640
msp48 1748680320
as2665 1596345472
ky26 1583088768
jw2394 1562695936
ml724 1557992448
jl56 1480538368
ha275 1467031936
sb238 1275168128
gf3 1189340928
jrb97 1012897664
slw67 824147840
pdm32 771726848
lh372 671649152
mx55 635310720
jsr59 592016256
xc279 554618880
as898 506352512
dc547 427380480
zc264 394048000
mpw6 385383040
hz244 374372096
km735 337744640
nb23 324053504
ls926 314810880
keckadmins 265108480
aa544 249558400
xl348 237337088
yf95 184142464
simen 163574272
xz374 162198144
lr579 159751424
nmb38 115795456
jjl83 109213440
mas343 96425216
yk336 95688832
williams 95688832
zl222 68034176
wb244 63682432
rka24 59127808
yy448 46536704
aa65 44632832
gene760 33406080
zhao 25241600
shuch 22284416
ajf73 22082688
amg89 21919360
co254 21889920
an377 19965312
xm24 19335680
jc2296 17970560
jw72 17455616
njc2 16694016
root 9156608
jk935 6167936
law72 5913984
cc59 4636672
yz464 1122176
gene760_2016 475520
bab99 387584
tl444 326144
dr395 185472
jhq4 117760
dw396 87680
mj332 60160
rm658 4096
jjp76 3968

farnam disk usage

total 5.66734E+11 of 600TB
gg487 79299862400
fn64 51040312704
sl857 46276689920
jx98 40506299904
tg397 36353418496
mg888 31988003712
cy288 31539641472
jz435 28417460992
sk972 21952756864
pse5 20382337024
sl2373 15494287104
dl598 15342007040
cs784 13943903232
mr724 11768326784
sl847 9958226560
wum2 9451179008
ll426 8905029760
pmm49 8177639424
jad248 7989755008
yy222 6347266176
rrk24 6182451584
yf9 5816445952
hm444 5718822528
yy532 5668207744
mihali 5459016704
lc848 4090249984
meg98 4075076608
ah633 3367398912
bp272 2906803456
xk4 2415551104
jjl86 2076307200
rdb9 1763952640
msp48 1748680320
as2665 1596345472
ky26 1583088768
jw2394 1562695936
ml724 1557992448
jl56 1480538368
ha275 1467031936
sb238 1275168128
gf3 1189340928
jrb97 1012897664
slw67 824147840
pdm32 771726848
lh372 671649152
jsr59 592016256
xc279 554618880
as898 506352512
dc547 427240576
mpw6 385383040
hz244 374372096
km735 337744640
nb23 324053504
ls926 314810880
keckadmins 265108480
aa544 249558400
zc264 244803200
xl348 237337088
simen 163574272
xz374 162198144
lr579 159751424
yf95 152837120
nmb38 115795456
jjl83 109213440
mas343 96425216
yk336 95688832
williams 95688832
zl222 68034176
wb244 63682432
rka24 59127808
yy448 46536704
aa65 44632832
gene760 33406080
mx55 27679616
zhao 25241600
shuch 22284416
amg89 21919360
co254 21889920
an377 19965312
xm24 19335680
jc2296 17970560
jw72 17455616
njc2 16694016
ajf73 10993024
root 9156608
jk935 6167936
law72 5913984
cc59 4636672
yz464 1122176
gene760_2016 475520
bab99 387584
tl444 326144
dr395 185472
jhq4 117760
mj332 60160
rm658 4096
jjp76 3968